Актуальні теми
#
Bonk Eco continues to show strength amid $USELESS rally
#
Pump.fun to raise $1B token sale, traders speculating on airdrop
#
Boop.Fun leading the way with a new launchpad on Solana.
Теорія спірального резонансу біткоїна (BSRT): абсолютно новий погляд Фібоначчі на біткоїн
До сьогодні майже кожен аналіз Bitcoin $BTC Fibonacci використовував один і той самий інструментарій XX століття: статичні горизонтальні рівні корекції/розширення (0,618, 1,618, 2,618 тощо), намальовані на логарифмічних або лінійних графіках, іноді з часовими поясами або дугами Фібоначчі. Вони корисні, але по суті це одномірні знімки.
Ось абсолютно нова концепція, яка ніколи раніше не з'являлася в жодній торговій книзі, відео чи наукових дослідженнях: ціна біткоїна не просто відкотиться за коефіцієнтами Фібоначчі; Він резонує вздовж тривимірної золотої спіралі, яка безперервно модулюється логарифмічним зростанням кривої циркуляції постачання.
Ми називаємо це Теорією спірального резонансу (SRT).
Основна ідея
Ціна біткоїна — це інтерференційний патерн, що виникає, коли дві золоті спіралі, що рухаються в протилежних напрямках вздовж осі часу, стикаються і підсилюються або скасовуються під точними кутами, заснованими на φ. Одна спіраль зумовлена прийняттям (розширенням назовні), інша — дефіцитом, викликаним удвічі (скороченням всередину). Їхні точки зустрічі з приголомшливою точністю відстежують основні злети і падіння циклів. Дві протилежно обертаються φ-спіралі
Спіраль усиновлення (назовні, проти годинникової стрілки)
Походження: блок Genesis (3 січня 2009)
Вектор зростання: прив'язаний до значення мережі за законом Меткалфа ≈ n²
Радіус у момент часу t = φ^(√months_since_genesis)
Ця спіраль ідеально відображає вершини бичачого ринку 2011, 2013, 2017 та 2021 років, якщо вимірювати від початку лог-ціна / полярно-часового простору.
Спіраль дефіциту (всередину, за годинниковою стрілкою)
Походження: проєктована асимптотична точка «останньої сатоші» (~2140)
Починається з теоретично нескінченної ціни у 2140 році і повертається назад у часі
Радіус у момент часу t = φ^-(√months_until_2140)
...
Найкращі
Рейтинг
Вибране

